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SIMULATIONS OF SURFACE TIDAL CURRENT CALCULATIONS FOR 
HF RADAR APPLICATIONS

R. S. Lyons and A. S. Frisch 
NOAA/ERL/Wave Propagation Laboratory 

Boulder, Colorado 80303

ABSTRACT

Coastal Ocean Dynamics Applications Radar (CODAR) data and possible 
data gaps were simulated to show the errors in mathematically recovered 
Fourier tidal coefficients when compared with the input coefficients. The 
modeled data consists of a Fourier series with three prominent tidal com
ponents of 12, 24, and 25.8 h, white noise with Gaussian distribution and a 
trend that simulates a storm surge and its recovery time. The baseline model 
(hourly sampled data, white Gaussian noise of standard deviation 1, and a 2- 
day trend) showed that recovery of the 12 h component with <20% error is 
possible with only 1 day's data, and all three components can be recovered in 
5 days with <20% error. This model was then applied to data gaps that occurred 
during field experiments. Simulation of a German experiment with a possible 
data loss of 8 h daily showed data for 2 days is necessary to obtain <20% 
error for the 12 h component's recovery and 6 days for all three. In an 
Alaskan experiment of 8 days, data was missing for one of these days. The 
simulation for that situation showed <7% error for all three components. This 
simulation is also applied to different experimental data losses or interrup
tions, different sampling intervals besides hourly, different components, and 
different noise levels to find necessary sample sizes for specified confidence 
levels.

INTRODUCTION

In many oceanographic applications we need to determine the amplitude and 
phase of tidal coefficients. We can compute these tidal coefficients from measure
ments such as the time variation of sea surface elevation, bottom pressure, or current 
velocity. We are using an HF Doppler radar system (sometimes called CODAR,
Coastal Ocean Dynamics Applications Radar), to measure ocean surface currents, 
and from these measurements we compute the tidal coefficients for selected sets of 
frequencies. However, we might have interruptions during the data taking process 
from equipment failure, or interference, for example, or changes in the flow caused 
by storm surge and transient wind conditions. All of these will cause errors in



the calculation of the tidal coefficients. For this reason, we simulated raw CODAR 
data to explain these errors that arose during data gathering and reduction and to 
predict what sample sizes are necessary to obtain reasonable confidence.

SIMULATING CODAR DATA

Our computer program's variable parameters that simulate the CODAR data in
clude time interval between data samples, number of components for the Fourier 
series, the components' amplitudes and frequencies, white noise level, sample 
length, and segments of no data. In addition, storm surges are simulated by adding 
a Fourier component. The output compares input amplitudes with the recovered 
amplitudes and the initial phase of 45° with the recovered phase in terms of the 
percentage error. The errors are graphed logarithmically by day according to the 
input prominent components, which we took as 12 h, 24 h, and 25.8 h. The ampli
tudes for these components of 2.570, 1.614, and 1.469 were taken from Defant's 
open ocean tidal coefficient table. The computer program forms a Fourier time 
series with the given amplitudes and frequencies, adds a Gaussian random noise 
with mean 0 and specified standard deviation for white noise, recovers the given 
amplitudes using an FFT and matrix inversion, and compares the recovered with the 
initial amplitudes by using

B. B*
tan - tanA. A*

phase error = ---------—r--------— x 100 and
* -1 itan —A.

amplitude error =
*2+ B. l x 100 ,

where the signal at time t is Z[A. cos(o).t) + B^ sin(co^t)] + N x n, a standard
i

Fourier series with frequency 03^ with a noise factor N times noise, a random Gaussian 
generated number n. The recovered amplitudes are designated with *. The program 
starts with a given number of days and repeats with data for the last day removed 
in each successive iteration. When data for only one day are analyzed, the entire
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procedure is repeated with a new random number generator seed. The program then 
averages the error for 10 different signals, each using a different seed in the 
random number generator. The random number generator depends on its initial seed
ing. If the same seed is used each time, the results will be biased. Therefore, 
10 different seeds are used and the resulting errors are averaged and plotted.

ANALYSES

First, we ran the program with hourly time intervals, no lost data, no trends, 
a noise level factor 1, and the three main Fourier coefficients for 20 days. The 
noise factor of 1 is an extreme example of noise relative to the actual data. The 
results of this run are shown in Figs, la and b. We can see the 12-h component 
recovered in 1 day, i.e., 24 data points, with an error of less than 20%. Recovery 
of the 12, 24, and 25.8 h components require data for 4 days for less than 20% 
error and data for 7 days for less than 5% error.

A low frequency disturbance was simulated with this model by adding a long 
period Fourier component. The simulation gave approximately the same errors with 
and without added trend, as seen in Figs. 2a and b for a 2-day trend and Figs. 3a 
and b for a 30-day trend. The errors oscillate with the period of the trend. 
Figures 2a and b show the errors with a 2-day trend of amplitude 4, and alternating 
daily perturbations resembling a cosine function can be seen. Figures 3a and b 
show the results with a 30-day trend of amplitude 10. The errors are higher than 
the no-trend data for small data samples and become lower at 15 days. If more data 
were computed, the errors would be expected to again be larger than the no-trend 
case at 30 days — again like a cosine function.

A 2-day trend with three components is a realistic case; it is used as a 
baseline for the comparisons that follow. We needed data for only 1 day to recover 
the 12-h component with less than 20% error. We needed data for 5 days to recover 
all three components with the same error; this is 2 days longer than the no-trend 
case because of the oscillations of the trend.
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After establishing the 2-day trend as our baseline, we explored our white 
noise level. We found that changing the noise-level factor approximately multi
plies the phase and amplitude errors by that amount as seen in Figs. 4a and b.
This shows the logarithmic error graphs of the 12-h component with a 2-day trend 
when noise levels of .5, 1, and 2 are used. We can easily see that multiplying the 
noise by 2 multiplies the errors by ^2.

We wrote this program to analyze errors resulting from data gaps. The pro
gram models various sampling intervals and gaps in data collection. The model 
indicates that increasing the sampling interval increases the error, (which im
plies that the number of days of the sample needs to be increased). Sampling 
every 4 hours increases the sample size of the 12-h component to 2 days for less 
than 20% error and of all three components to 6 days for the same error. Sampl
ing every 6 h (Figs. 5a and b) would require 3 days for the 12-h component and 8 
days for all with less than 20% error. We did not sample with >6-h intervals 
since sampling intervals >6 h exceeds the Nyquist frequency of the 12-h component. 
From this study, the sample size in days to recover all three components with 
£ 20% error seems to be the time interval in hours plus 2, which is a fairly 
small sample. The problem of missing data also shows slightly larger sample spaces 
necessary for reliable data.

A situation arose which we have used as an example for studying missing data. 
In an experiment in Helgoland, Germany, the CODAR signal sampled hourly had inter
ference for the same 8-h period every day. This extreme case was simulated (Figs. 
6a and b). Missing data are from the hours of 3 to 11 every day. To recover the 
12-h component with less than a 20% error would require 2 days of data. To recover 
all three would require 6 days — not much more than the baseline sample sizes.

Another unique situation occurred during an Alaskan experiment where CODAR 
data were taken hourly for 8 days, but there were no data over a large ocean area 
for day 3. Figures 7a and b display the errors calculated by the model for the 8- 
day hourly sample with a data gap for all of day 3. The errors are all less than 
7% for the 8-day period.
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SUMMARY

This model simulates situations that arose during CODAR field experiments.
The basic data model includes a Fourier series with three prominent components as 
well as noise and a trend. The white noise factor multiplied the phase and ampli
tude errors by that factor, i.e., doubling the noise doubled the error; throughout 
these studies we used a noise level of 1. A trend is input as a 2-day Fourier 
component of amplitude about double that of the prominent components. This simu
lates a storm (frequent during experiments) and its recovery time off-shore. The 
errors using a trend were similar in magnitude to the no-trend case except for 
oscillations that fluctuate with the period of the trend. Surprisingly, with or 
without a trend, the 12-h component's recovery is relatively error free. In data 
for only 1 day sampled hourly the phase and amplitude errors were less than 20%, so 
using that amount gives fairly accurate results. Recovery of the 24- and 25.8-h 
components requires 7 days of data to obtain errors less than 20%. This is because 
the method has a difficult time differentiating between the closely spaced com
ponents. In fact, modeling with a 24.5-h component instead of the 25.8 nearly 
doubled the errors. This proves that the closer the components are together, the 
more difficult is recovery. By varying the time intervals between samples we found 
that increasing the time interval increased the sample size necessary for con
fidence in the data. If we sampled every 8 h instead of hourly, we needed data for 
8 days to obtain the 12-h component and for 11 days to obtain all three components 
with less than 20% error. For an Alaskan experiment of hourly data for 8 days with 
one missing day the simulation using day 3 as the data gap gave errors of less than 
7% for recovery of all three components. Simulating another situation of an 8-h 
daily data gap, showed that the 12-h component would be recovered in 2 days with a 
10% error and all three amplitudes could be recovered in only 6 days with less than 
a 20% error. This modeling process can be useful in the future to simulate similar 
data problems so data interpretation will be easier.

The results of this study give sample size for various errors of specific 
simulated conditions, which lends credibility to the previous CODAR experiments. 
These results can help plan the lengths of future experiments with reasonable 
error limits.
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Noise is 1.000
FrequencyAmplitude

0.5062.570• 12.0
0.2631.614a 24.0
0.243*25.8 1.469
0.000Trend =

24.0020.0012.00

Figure la & b. Phase and amplitude errors of three tidal components plotted
logarithmically over the number of days of hourly theoretical data with no 
trend and noise level 1. These graphs can be used to determine the number 
of days needed to obtain data with a specific error.
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Noise is 1.000
FrequencyAmplitude

0.506• 12.0 2.570
0.263A 24.0 1.614

*25.8 1.469 0.243
Trend = 0.000

0.00 4.00 8.00 12.00 16.00 20.00 24.00
Days
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Noise is 1.000
FrequencyAmplitude

0.5062.570• 12.0
0.2631.614A 24.0
0.2431.469*25.8

Trend =

24.0020.0016.0012.00
Days

Figure 2a & b. A 2-day trend of amplitude 4 was added to the three tidal
components plotted logarithmically over the number of days sampled hourly 
for the phase and amplitude error. This graph which is used as our baseline 
for other studies shows that the 12-h component can be recovered in one day 
and all three in 5 days with less than a 20% error. The daily fluctuations 
caused by this 2-day trend (compare with no-trend case, Fig. 1.)
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Noise is 1.000
FrequencyAmplitude

0.5062.570• 12.0
0.2631.614a 24.0
0.2431.469*25.8
0.131Trend =

0.00 4.00 8.00 12.00 16.00 20.00 24.00
Days
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Noise is 1.000
FrequencyAmplitude

0.5062.570• 12.0
0.2631.614a 24.0
0.2431.469*25.8
0.009Trend =

0.00 4.00 8.00 12.00 16.00 20.00 24.00

Days

Figure 3a & b. A 30-day trend of amplitude 10 was added to the three tidal
components plotted over the number of hourly sampled days for the phase and 
amplitude errors. This case when compared with Fig. 1, the no trend case, and 
Fig. 2 with a 2 day trend, a more logical case, shows the differences of a 
long period trend.
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Noise is 1.000
FrequencyAmplitude

0.5062.570• 12.0
0.2631.614A 24.0
0.243*25.8 1.469
0.009Trend =

0.00 4.00 8.00 12.00 16.00 20.00 24.00

Days
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Figure 4a & b. Phase and amplitude errors of the 12-h component using noise levels 
of .5, 1, and 2, in the baseline model of all three components with a 2-day 
trend. These graphs show that doubling the noise doubles the error.
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Noise is 1.000

FrequencyAmplitudeHour
0.5062.570• 12.0
0.2631.614A 24.0

* 25.8 0.2431.469
0.131Trend =

0.00 4.00 8.00 12.00 16.00 20.00 24.00
Days

Figure 5a & b. The phase and amplitude errors of sampling every 6 h instead of 
hourly, using the baseline parameters of noise level 1 and a 2-day trend.
Note the longer sample sizes necessary to recover the components: 3 days for
the 12-h and 8 days for all three.
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Noise is 1.000

FrequencyAmplitudeHour
0.5062.570• 12.0
0.2631.614A 24.0
0.243* 25.8 1.469
0.131Trend =
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Noise is 1.000
FrequencyAmplitude

0.506• 12.0 2.570
0.2631.614a 24.0
0.2431.469*25.8
0.131Trend =

0.00 4.00 8.00 12.00 16.00 20.00 24.00

Days

Figure 6a & b. Simulation of Helgoland data. The necessary sample sizes for phase 
and amplitude errors less than 20% for the case of 8 h of missing hourly data 
every day using the baseline parameters are increased. (Compared with Fig.
2a & b.) Recovery of the 12-h component needs 2 days of data; recovery of 
all three needs 6 days of data.
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Noise is 1.000
FrequencyAmplitude

0.5062.570• 12.0
0.2631.614a 24.0
0.243*25.8 1.469

Trend =

0.00 4.00 8.00 12.00 16.00 20.00 24.00
Days
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Noise is 1.000
FrequencyAmplitudeHour

0.5062.570• 12.0
0.2631.614a 24.0
0.2431.469*25.8
0.131Trend =

12.0010.00

Figure 7a & b. Simulation of Alaska data. The phase and amplitude errors of
hourly data for 8 days, [using our baseline model] for the case where there 
was a 24-h data gap at day 3. This data gap situation happened for large 
areas of an Alaskan experiment. When compared with Fig. 2, and the hourly-2 
day trend case, this simulation shows that the sample size will increase 1 
day to 5 days for three-component recovery with less than a 20% error.
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Noise is 1.000
Amplitude Frequency

• 12.0 2.570 0.506
a 24.0 1.614 0.263
*25.8 1.469 0.243

Trend = 0.131

0.00 2.00 4.00 6.00 8.00 10.00 12.00
Days
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